对偶感知机算法实现
李航老师《统计学习方法》第二章笔记。 关于感知机学习算法对偶形式的简单实现。
算法原理¶
算法实现¶
import numpy as np
from matplotlib import pyplot as plt
# S1-->随机生成训练集并标注
# train matrix
def get_train_data():
M1 = np.random.random((100, 2))
M11 = np.column_stack((M1, np.ones(100)))
M2 = np.random.random((100, 2)) - 0.7
M22 = np.column_stack((M2, np.ones(100) * (-1)))
# 合并两类,并将位置索引加到最后
MA = np.vstack((M11, M22))
MA = np.column_stack((MA, range(0, 200)))
# 作图操作
plt.plot(M1[:, 0], M1[:, 1], 'ro')
plt.plot(M2[:, 0], M2[:, 1], 'go')
# 为了美观,根据数据点限制之后分类线的范围
min_x = np.min(M2)
max_x = np.max(M1)
# 分隔 x,方便作图
x = np.linspace(min_x, max_x, 100)
# 此处返回 x 是为了之后作图方便
return MA, x
# S2-->GRAM 计算
def get_gram(MA):
GRAM = np.empty(shape=(200, 200))
for i in range(len(MA)):
for j in range(len(MA)):
GRAM[i, j] = np.dot(MA[i,][:2], MA[j,][:2])
return GRAM
# S3-->训练模型
# 模型实现
def func(alpha, b, xi, yi, yN, index, GRAM):
pa1 = alpha * yN
pa2 = GRAM[:, index]
num = yi * (np.dot(pa1, pa2) + b)
return num
# 训练 training data
def train(MA, alpha, b, GRAM, yN):
# M 存储每次处理后依旧处于误分类的原始数据
M = []
for sample in MA:
xi = sample[0:2]
yi = sample[-2]
index = int(sample[-1])
# 如果为误分类,改变 alpha,b
# n 为学习率
if func(alpha, b, xi, yi, yN, index, GRAM) <= 0:
alpha[index] += n
b += n * yi
M.append(sample)
if len(M) > 0:
train(M, alpha, b, GRAM, yN)
return alpha, b
# 作出分类线的图
def plot_classify(w, b, x, rate0):
y = (w[0] * x + b) / ((-1) * w[1])
plt.plot(x, y)
plt.title('Accuracy = ' + str(rate0))
# S4-->生成测试集并测试模型准确性
# 随机生成 testing data 并作图
def get_test_data():
M = np.random.random((50, 2))
plt.plot(M[:, 0], M[:, 1], '*y')
return M
# 对传入的 testing data 的单个样本进行分类
def classify(w, b, test_i):
if np.sign(np.dot(w, test_i) + b) == 1:
return 1
else:
return 0
# 测试数据,返回正确率
def test(w, b, test_data):
right_count = 0
for test_i in test_data:
classx = classify(w, b, test_i)
if classx == 1:
right_count += 1
rate = right_count / len(test_data)
return rate
# 作出学习率——准确率的图
def plot_n_rate(rate_l):
# plot n-rate
n_l = sorted([float(x) for x in rate_l.keys()])
y = [float(rate_l[n_l[i]]) for i in range(len(n_l))]
print(n_l, '\n', y)
plt.plot(n_l, y, 'ro-')
plt.title("n-accuracy")
plt.show()
if __name__ == "__main__":
MA, x = get_train_data()
test_data = get_test_data()
GRAM = get_gram(MA)
yN = MA[:, 2]
xN = MA[:, 0:2]
# 定义初始值
alpha = [0] * 200
b = 0
n = 1
# 初始化最优的正确率
rate0 = 0
rate_l = {}
# print(alpha,b)
# 循环不同的学习率 n,寻求最优的学习率,即最终的 rate0
# w0,b0 为对应的最优参数
for i in np.linspace(0.01, 1, 1000):
n = i
alpha, b = train(MA, alpha, b, GRAM, yN)
alphap = np.column_stack((alpha * yN, alpha * yN))
w = sum(alphap * xN)
rate = test(w, b, test_data)
# print(w,b)
rate = test(w, b, test_data)
if rate > rate0:
rate_l[n] = rate
rate0 = rate
w0 = w
b0 = b
print('Until now, the best result of the accuracy on test data is ' + str(rate))
print('with w=' + str(w0) + ' b=' + str(b0))
print("n=", n)
print('---------------------------------------------')
# 在选定最优的学习率后,作图
plot_classify(w0, b0, x, rate0)
plt.show()
# 作出学习率——准确率的图
plot_n_rate(rate_l)
输出: