跳转至

2025

ToyRL: 从零实现深度强化学习算法

简介

在看 LLM + RL 的一些论文时,发现对于一些 RL 概念 (比如 GAE) 的理解还是有所欠缺, 所以就系统地学习了一遍深度强化学习(Deep Reinforcement Learning)相关的知识。选的书是 Foundations of Deep Reinforcement Learning1.

在阅读过程中,将书中介绍的一些算法(REINFORCE、SARSA、DQN(Double DQN)、A2C、PPO)用 PyTorch 从头实现了一遍,统一整理到了开源库, 也就是今天要介绍的 ToyRL。 为了更好地配合书一起学习,当前实现尽量贴近书中的伪代码。 另外每个算法实现都在一个 Python 文件内完成,虽然有些重复代码,但是避免了代码碎片化,更便于学习。

LLM Speculative Sampling

前言

今天我们将介绍并复现 Deepmind 的一篇关于 LLM Speculative Sampling 的论文:Accelerating large language model decoding with speculative sampling1. 我们将用不到 100 行代码来复现这篇论文,并得到 2 倍以上的速度提升。

Presentia: 简单而优雅的 Presentation 模板

Why

我真的用不好 PowerPoint,Keynote 也不行,这些工具对我来说都太复杂了。 这些基于拖拽的工具有很多小的问题让我很难受,比如两段文字到底有没有对齐…… 我想要的是一个简单的工具,让我可以专注于内容,且可以自动生成美观大方的排版。 同时这些内容的源文件是 文本,这样我就可以用 Git 来做版本控制了。

对于这个问题,我的第一个解法 LaTeX 的 Beamer,第二个解法是 Typst 的 Touying。

Deepseek GRPO 中的 KL Divergence

Deepseek R1 发布之后,看到了论文中 RL 的算法用的是 GRPO,而 GRPO 是在之前 Deepseek Math 的论文中被提出来的。GRPO 的目标函数如下:

\[ \begin{aligned} \mathcal{J}_{GRPO}(\theta) &= \mathbb{E}_{[q \sim P(Q), \{o_i\}_{i=1}^G \sim \pi_{\theta_{old}}(O\mid q)]} \frac{1}{G}\sum_{i=1}^G \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} \Biggl\{ \min \Biggl[ \frac{\pi_\theta(o_{i,t} \mid q, o_{i,<t})}{\pi_{\theta_{old}}(o_{i,t} \mid q, o_{i,<t})} \hat{A}_{i,t}, \text{clip}\Biggl( \frac{\pi_\theta(o_{i,t} \mid q, o_{i,<t})}{\pi_{\theta_{old}}(o_{i,t} \mid q, o_{i,<t})}, 1 - \epsilon, 1 + \epsilon \Biggr) \hat{A}_{i,t} \Biggr] \\ &\quad - \beta \, \mathbb{D}_{KL}\left[\pi_{\theta} \parallel \pi_{ref}\right] \Biggr\} \end{aligned} \]