跳转至

2024

zhplot: 让 Python 中文做图变得简单

Why

在日常工作的少数的场景,我需要用 Python 画一些包含中文的图,一般为了简单快捷都会使用 matplotlib。 在半分钟写完画图代码后,发现图片的文字部分一堆方框后是真的很无奈... 是的,中文字体的支持并不在很多开源库的考虑范围内,这是事实,在社区搜一下能看到一大把的图片显示中文的 issue。

我本来只是想画个图而已,但是我现在需要去搜索怎么安装中文字体,怎么让这些开源库能够找到自己安装的字体...本来半分钟搞定的事情, 现在怎么都要花个十来分钟去搜索解决方案,并做一系列字体相关的操作。 这种“小而烦”的问题有时候很影响心情,更不用说这种 Context Switch 的带来的原工作节奏扰乱。 解决这个“小而烦”的问题就是 zhplot 项目要达成的目标。

斯坦福小镇 (AI-Town) 系统解读

核心要点

本文解读了斯坦福小镇(AI-Town)项目,重点关注其在生成式代理方面的创新架构设计。 主要包含以下几个关键部分:

  1. 记忆系统(Memory Stream):长期记忆模块
  2. 反思机制(Reflection):高层次推理能力
  3. 计划系统(Planning):行为规划与执行
  4. 评估方法(Evaluation):代理行为的可信度验证

启发与应用

本文的核心概念对游戏 NPC 设计具有重要的参考价值,特别是在:

  • NPC 记忆系统的设计
  • 行为的真实性和可信度
  • 动态社交关系的构建
  • 环境互动的自然性

Dawid-Skene 算法

Lilian 在Thinking about High-Quality Human Data | Lil'Log 对数据标注的质量进行了一些很有远见的讨论。 这里我们主要对标签聚合算法 (真值推断) Dawid-Skene 算法进行一些较为深入讨论。

所谓标签聚合算法,是指从多个标注者的标注结果中推断出最可靠的标签。

简介

Dawid-Skene 算法最早是应用于临床医学相关的领域, 用于聚合多个临床专家对同一个病人的的判断结果。 后来被广泛应用于数据标注领域,用于聚合多个标注结果得到最可靠的标签。

终身学习:2023

终身学习 (Lifelong learning)

Lifelong learning is the "ongoing, voluntary, and self-motivated" pursuit of knowledge for either personal or professional reasons.1

本文主要是过去一年的学习记录,内容较为杂乱,主要是为备忘。