Skip to content

Bet until win all the money

Problem

Question

A has $1 and B has $10. They bet $1 each time, with both having a 50% chance of winning each bet. What's the probability that A will win all of B's money?

A有1块钱,B有10块钱,一次赌一块钱,每次双方赢的概率都是50%。问A能把B赢光的概率是多少?

Tip

Tip

Transition Probability Matrix

概率转移矩阵

Solutions

Solution1

Solution1: Analysis

First, let's simplify the problem a bit: there is a total of 11 dollars in the entire gambling game. The game ends when one person's money becomes 0: either A loses everything, at which point B has 11 dollars; or B loses everything, at which point A has 11 dollars.

Let's define the probability of A winning when having \(x\) dollars as \(P(A=x) = p_{x}\), then according to the game rules:

\[\begin{align*} p_{11} &= 1 \\ p_{0} &= 0 \\ \end{align*}\]

Since A's initial stake is 1 dollar, the probability we're looking for is \(p_{1}\)

According to the game rules, to reach state \(A=1\), there's only one scenario: losing one round after \(A=2\), Thus we get the following relationship:

\[ p_{1} = \frac{1}{2} \cdot p_{2} \]

Similarly, to reach state \(A=2\), there are two scenarios: winning one round from \(A=1\) or losing one round from \(A=3\). Therefore:

\[ p_{2} = \frac{1}{2} \cdot p_{1} + \frac{1}{2} \cdot p_{3} \\ \]

Following this pattern, we can derive these relationships:

\[\begin{align*} p_{2} &= \frac{1}{2} \cdot p_{1} + \frac{1}{2} \cdot p_{3} \\ p_{3} &= \frac{1}{2} \cdot p_{2} + \frac{1}{2} \cdot p_{4} \\ \vdots \\ p_{9} &= \frac{1}{2} \cdot p_{8} + \frac{1}{2} \cdot p_{10} \\ \end{align*}\]

Let's rearrange these formulas:

\[\begin{align*} p_{0} &= 0 \\ p_{1} - \frac{1}{2} \cdot p_{2} &= 0 \\ -\frac{1}{2} \cdot p_{1} + p_{2} - \frac{1}{2} \cdot p_{3} &= 0 \\ -\frac{1}{2} \cdot p_{2} + p_{3} - \frac{1}{2} \cdot p_{4} &= 0 \\ \vdots \\ -\frac{1}{2} \cdot p_{7} + p_{8} - \frac{1}{2} \cdot p_{9} &= 0 \\ -\frac{1}{2} \cdot p_{8} + p_{9} - \frac{1}{2} \cdot p_{10} &= 0 \\ p_{11} &= 1 \\ \end{align*}\]

These equations can be written in matrix form:

\[\begin{equation*} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0\\ 0 & 1 & -1/2 & 0 & 0 & \cdots & 0 & 0 & 0 & 0\\ 0 & -1/2 & 1 & -1/2 & 0 & \cdots & 0 & 0 & 0 & 0\\ \vdots & \vdots & \vdots &\vdots &\vdots & \cdots &\vdots &\vdots &\vdots &\vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & -1/2 & 1 & -1/2 & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 \\ \end{bmatrix} \begin{bmatrix} p_{0} \\ p_{1} \\p_{2} \\ \vdots \\ p_{9} \\ p_{10} \\ p_{11} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \end{bmatrix} \end{equation*}\]

This can be written as:

\[ Ax = b \]

Where,

\[ \begin{align*} A &= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0\\ 0 & 1 & -1/2 & 0 & 0 & \cdots & 0 & 0 & 0 & 0\\ 0 & -1/2 & 1 & -1/2 & 0 & \cdots & 0 & 0 & 0 & 0\\ \vdots & \vdots & \vdots &\vdots &\vdots & \cdots &\vdots &\vdots &\vdots &\vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & -1/2 & 1 & -1/2 & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 \\ \end{bmatrix} \\ x &= \begin{bmatrix} p_{0} & p_{1} & p_{2} & \cdots & p_{9} & p_{10} & p_{11} \end{bmatrix}^{T} \\ b &= \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & 0 & 1 \end{bmatrix}^{T} \end{align*} \]

Using \(X=A^{-1}B\), we solve for \(x\):

More precise matrix calculations

Here we can use sympy for more precise matrix calculations:

from sympy import Rational
from sympy.matrices import Matrix


def solve():
    matrix = [[0]*12 for _ in range(12)]
    # matrix rows: p0, p1
    matrix[0][0] = 1
    matrix[1][1], matrix[1][2] = 1, Rational(-1, 2)
    # matrix rows: p2~p10
    for i in range(2, 11):
        matrix[i][i-1:i+2] = Rational(-1, 2), 1, Rational(-1, 2)
    # matrix rows: p11
    matrix[11][-1] = 1

    A = Matrix(matrix)
    b = Matrix([0] * 11 + [1])

    return A.inv() * b

The running result is:

Matrix([[0, 1/11, 2/11, 3/11, 4/11, 5/11, 6/11, 7/11, 8/11, 9/11, 10/11, 1]])
\[ x = [0, 1/11, 2/11, 3/11, 4/11, 5/11, 6/11, 7/11, 8/11, 9/11, 10/11, 1]^T \]

Therefore,

\[ p_{1} = \frac{1}{11} \approx 0.09090909090909091 \]

So the probability of A winning all of B's money is \(\frac{1}{11}\)

首先让我们稍微简化一下问题:整个赌局从开始到结束,总共就是这 11 块钱。 结束的标志的就是其中一个人的钱变为 0:要么 A 输光,此时 B 的钱是 11 块;要么 B 输光,此时 A 的钱是 11 块。

设事件即 A 拥有\(x\)块钱时获胜的概率为\(P(A=x) = p_{x}\),那么根据游戏规则有:

\[\begin{align*} p_{11} &= 1 \\ p_{0} &= 0 \\ \end{align*}\]

因为 A 的初始赌资是 1 块钱,所以我们要求的概率就是\(p_{1}\)

根据游戏规则得到\(A=1\)的状态只有一种情况:\(A=2\)后输一局, 由此得到下面的关系:

\[ p_{1} = \frac{1}{2} \cdot p_{2} \]

类似的,得到\(A=2\)的状态有两种种情况:\(A=1\)后赢一局或\(A=3\)后输一局。据此得:

\[ p_{2} = \frac{1}{2} \cdot p_{1} + \frac{1}{2} \cdot p_{3} \\ \]

以此类推,可以得到下述关系:

\[\begin{align*} p_{2} &= \frac{1}{2} \cdot p_{1} + \frac{1}{2} \cdot p_{3} \\ p_{3} &= \frac{1}{2} \cdot p_{2} + \frac{1}{2} \cdot p_{4} \\ \vdots \\ p_{9} &= \frac{1}{2} \cdot p_{8} + \frac{1}{2} \cdot p_{10} \\ \end{align*}\]

我们将上面的一系列公式整理一下,得到:

\[\begin{align*} p_{0} &= 0 \\ p_{1} - \frac{1}{2} \cdot p_{2} &= 0 \\ -\frac{1}{2} \cdot p_{1} + p_{2} - \frac{1}{2} \cdot p_{3} &= 0 \\ -\frac{1}{2} \cdot p_{2} + p_{3} - \frac{1}{2} \cdot p_{4} &= 0 \\ \vdots \\ -\frac{1}{2} \cdot p_{7} + p_{8} - \frac{1}{2} \cdot p_{9} &= 0 \\ -\frac{1}{2} \cdot p_{8} + p_{9} - \frac{1}{2} \cdot p_{10} &= 0 \\ p_{11} &= 1 \\ \end{align*}\]

那么上述方程式可以写成下面的形式:

\[\begin{equation*} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0\\ 0 & 1 & -1/2 & 0 & 0 & \cdots & 0 & 0 & 0 & 0\\ 0 & -1/2 & 1 & -1/2 & 0 & \cdots & 0 & 0 & 0 & 0\\ \vdots & \vdots & \vdots &\vdots &\vdots & \cdots &\vdots &\vdots &\vdots &\vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & -1/2 & 1 & -1/2 & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 \\ \end{bmatrix} \begin{bmatrix} p_{0} \\ p_{1} \\p_{2} \\ \vdots \\ p_{9} \\ p_{10} \\ p_{11} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \end{bmatrix} \end{equation*}\]

上式可以写为:

\[ Ax = b \]

其中,

\[ \begin{align*} A &= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0\\ 0 & 1 & -1/2 & 0 & 0 & \cdots & 0 & 0 & 0 & 0\\ 0 & -1/2 & 1 & -1/2 & 0 & \cdots & 0 & 0 & 0 & 0\\ \vdots & \vdots & \vdots &\vdots &\vdots & \cdots &\vdots &\vdots &\vdots &\vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & -1/2 & 1 & -1/2 & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 \\ \end{bmatrix} \\ x &= \begin{bmatrix} p_{0} & p_{1} & p_{2} & \cdots & p_{9} & p_{10} & p_{11} \end{bmatrix}^{T} \\ b &= \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & 0 & 1 \end{bmatrix}^{T} \end{align*} \]

根据\(X=A^{-1}B\), 求解得到\(x\):

更精确的矩阵运算

这里我们可以用sympy来进行更精确的矩阵运算:

from sympy import Rational
from sympy.matrices import Matrix


def solve():
    matrix = [[0]*12 for _ in range(12)]
    # matrix rows: p0, p1
    matrix[0][0] = 1
    matrix[1][1], matrix[1][2] = 1, Rational(-1, 2)
    # matrix rows: p2~p10
    for i in range(2, 11):
        matrix[i][i-1:i+2] = Rational(-1, 2), 1, Rational(-1, 2)
    # matrix rows: p11
    matrix[11][-1] = 1

    A = Matrix(matrix)
    b = Matrix([0] * 11 + [1])

    return A.inv() * b

运行返回结果为:

Matrix([[0, 1/11, 2/11, 3/11, 4/11, 5/11, 6/11, 7/11, 8/11, 9/11, 10/11, 1]])
\[ x = [0, 1/11, 2/11, 3/11, 4/11, 5/11, 6/11, 7/11, 8/11, 9/11, 10/11, 1]^T \]

因此,

\[ p_{1} = \frac{1}{11} \approx 0.09090909090909091 \]

所以 A 将 B 赢光的概率为\(\frac{1}{11}\)

Solution2: Simulation

Solution2: Simulation

We can directly simulate the process of the gambling game to calculate the numerical solution to this problem:

import random


def is_a_win() -> bool:
    return random.uniform(0, 1) < 0.5


def run_once() -> bool:
    money_a, money_b = 1, 10
    # run until a or b has no money
    while money_a != 0 and money_b != 0:
        if is_a_win():
            money_a += 1
            money_b -= 1
        else:
            money_a -= 1
            money_b += 1

    if money_a == 11 and money_b == 0:
        return True
    else:
        return False


def simulation(run_nums: int = 1000000):
    a_win_count = 0
    for _ in range(run_nums):
        a_win_count += run_once()
    prob = a_win_count / run_nums
    print(f"A win prob in simulation: {prob}\n")
    print(f"1/11 = {1/11}\n")
    return prob


simulation()

A win prob in simulation: 0.090334

1/11 = 0.09090909090909091

我们可以直接模拟赌博游戏的过程来算出该问题的数值解:

import random


def is_a_win() -> bool:
    return random.uniform(0, 1) < 0.5


def run_once() -> bool:
    money_a, money_b = 1, 10
    # run until a or b has no money
    while money_a != 0 and money_b != 0:
        if is_a_win():
            money_a += 1
            money_b -= 1
        else:
            money_a -= 1
            money_b += 1

    if money_a == 11 and money_b == 0:
        return True
    else:
        return False


def simulation(run_nums: int = 1000000):
    a_win_count = 0
    for _ in range(run_nums):
        a_win_count += run_once()
    prob = a_win_count / run_nums
    print(f"A win prob in simulation: {prob}\n")
    print(f"1/11 = {1/11}\n")
    return prob


simulation()

A win prob in simulation: 0.090602

1/11 = 0.09090909090909091