Bet until win all the money¶
Problem¶
Question
A has $1 and B has $10. They bet $1 each time, with both having a 50% chance of winning each bet. What's the probability that A will win all of B's money?
A有1块钱,B有10块钱,一次赌一块钱,每次双方赢的概率都是50%。问A能把B赢光的概率是多少?
Tip¶
Tip
Transition Probability Matrix
概率转移矩阵
Solutions¶
Solution1¶
Solution1: Analysis
First, let's simplify the problem a bit: there is a total of 11 dollars in the entire gambling game. The game ends when one person's money becomes 0: either A loses everything, at which point B has 11 dollars; or B loses everything, at which point A has 11 dollars.
Let's define the probability of A winning when having \(x\) dollars as \(P(A=x) = p_{x}\), then according to the game rules:
Since A's initial stake is 1 dollar, the probability we're looking for is \(p_{1}\)
According to the game rules, to reach state \(A=1\), there's only one scenario: losing one round after \(A=2\), Thus we get the following relationship:
Similarly, to reach state \(A=2\), there are two scenarios: winning one round from \(A=1\) or losing one round from \(A=3\). Therefore:
Following this pattern, we can derive these relationships:
Let's rearrange these formulas:
These equations can be written in matrix form:
This can be written as:
Where,
Using \(X=A^{-1}B\), we solve for \(x\):
More precise matrix calculations
Here we can use sympy
for more precise matrix calculations:
from sympy import Rational
from sympy.matrices import Matrix
def solve():
matrix = [[0]*12 for _ in range(12)]
# matrix rows: p0, p1
matrix[0][0] = 1
matrix[1][1], matrix[1][2] = 1, Rational(-1, 2)
# matrix rows: p2~p10
for i in range(2, 11):
matrix[i][i-1:i+2] = Rational(-1, 2), 1, Rational(-1, 2)
# matrix rows: p11
matrix[11][-1] = 1
A = Matrix(matrix)
b = Matrix([0] * 11 + [1])
return A.inv() * b
The running result is:
Matrix([[0, 1/11, 2/11, 3/11, 4/11, 5/11, 6/11, 7/11, 8/11, 9/11, 10/11, 1]])
Therefore,
So the probability of A winning all of B's money is \(\frac{1}{11}\)
首先让我们稍微简化一下问题:整个赌局从开始到结束,总共就是这 11 块钱。 结束的标志的就是其中一个人的钱变为 0:要么 A 输光,此时 B 的钱是 11 块;要么 B 输光,此时 A 的钱是 11 块。
设事件即 A 拥有\(x\)块钱时获胜的概率为\(P(A=x) = p_{x}\),那么根据游戏规则有:
因为 A 的初始赌资是 1 块钱,所以我们要求的概率就是\(p_{1}\)。
根据游戏规则得到\(A=1\)的状态只有一种情况:\(A=2\)后输一局, 由此得到下面的关系:
类似的,得到\(A=2\)的状态有两种种情况:\(A=1\)后赢一局或\(A=3\)后输一局。据此得:
以此类推,可以得到下述关系:
我们将上面的一系列公式整理一下,得到:
那么上述方程式可以写成下面的形式:
上式可以写为:
其中,
根据\(X=A^{-1}B\), 求解得到\(x\):
更精确的矩阵运算
这里我们可以用sympy
来进行更精确的矩阵运算:
from sympy import Rational
from sympy.matrices import Matrix
def solve():
matrix = [[0]*12 for _ in range(12)]
# matrix rows: p0, p1
matrix[0][0] = 1
matrix[1][1], matrix[1][2] = 1, Rational(-1, 2)
# matrix rows: p2~p10
for i in range(2, 11):
matrix[i][i-1:i+2] = Rational(-1, 2), 1, Rational(-1, 2)
# matrix rows: p11
matrix[11][-1] = 1
A = Matrix(matrix)
b = Matrix([0] * 11 + [1])
return A.inv() * b
运行返回结果为:
Matrix([[0, 1/11, 2/11, 3/11, 4/11, 5/11, 6/11, 7/11, 8/11, 9/11, 10/11, 1]])
因此,
所以 A 将 B 赢光的概率为\(\frac{1}{11}\)
Solution2: Simulation¶
Solution2: Simulation
We can directly simulate the process of the gambling game to calculate the numerical solution to this problem:
import random
def is_a_win() -> bool:
return random.uniform(0, 1) < 0.5
def run_once() -> bool:
money_a, money_b = 1, 10
# run until a or b has no money
while money_a != 0 and money_b != 0:
if is_a_win():
money_a += 1
money_b -= 1
else:
money_a -= 1
money_b += 1
if money_a == 11 and money_b == 0:
return True
else:
return False
def simulation(run_nums: int = 1000000):
a_win_count = 0
for _ in range(run_nums):
a_win_count += run_once()
prob = a_win_count / run_nums
print(f"A win prob in simulation: {prob}\n")
print(f"1/11 = {1/11}\n")
return prob
simulation()
A win prob in simulation: 0.090334
1/11 = 0.09090909090909091
我们可以直接模拟赌博游戏的过程来算出该问题的数值解:
import random
def is_a_win() -> bool:
return random.uniform(0, 1) < 0.5
def run_once() -> bool:
money_a, money_b = 1, 10
# run until a or b has no money
while money_a != 0 and money_b != 0:
if is_a_win():
money_a += 1
money_b -= 1
else:
money_a -= 1
money_b += 1
if money_a == 11 and money_b == 0:
return True
else:
return False
def simulation(run_nums: int = 1000000):
a_win_count = 0
for _ in range(run_nums):
a_win_count += run_once()
prob = a_win_count / run_nums
print(f"A win prob in simulation: {prob}\n")
print(f"1/11 = {1/11}\n")
return prob
simulation()
A win prob in simulation: 0.090602
1/11 = 0.09090909090909091